Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 49(3): 670-683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38015410

RESUMO

White matter dysplasia (WMD) in preterm infants due to intrauterine inflammation is caused by excessive apoptosis of oligodendrocyte precursor cells (OPCs). In recent years, studies have found that excessive autophagy and apoptosis are highly interconnected and important in infection and inflammatory diseases in general. Therefore, in this study, we aimed to confirm whether regulation of autophagy by using the Akt phosphorylation agonist SC79 can inhibit abnormal apoptosis of OPCs and promote myelin maturation and white matter development in neonatal rats with WMD. We investigated the effect of inflammation on oligodendrocyte development in P0 neonatal rats by intracerebellar injection of LPS, and collected brain tissue at P2 and P5. Immunohistochemical and immunofluorescence staining were used to evaluate white matter damage, while immunofluorescence staining, terminal deoxynucleotidyl transferase dUTP nick end labeling analysis (TUNEL), and western blotting were used to evaluate autophagy and apoptosis. First, we observed that white matter development was arrested and white matter fiber maturation was impaired in LPS-inflicted pups compared with those in the sham-operated group. Second, treatment with SC79 reduced the levels of LC3II, caspase 3, caspase 9, and Bax/Bcl-2 and increased the levels of p62, p-Akt, and p-mTOR in the brain tissue of neonatal rats. Finally, SC79 treatment inhibited OPC apoptosis by increasing the binding of Beclin 1 to Bcl-2, which promoted OPC differentiation and maturation. However, the opposite results were observed after rapamycin administration. Taken together, our results suggest that SC79 can inhibit the abnormal apoptosis of OPCs caused by excessive autophagy through the Akt/mTOR pathway and that SC79 is a potential therapeutic agent for WMD in preterm infants.


Assuntos
Células Precursoras de Oligodendrócitos , Substância Branca , Humanos , Recém-Nascido , Ratos , Animais , Substância Branca/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Lipopolissacarídeos/farmacologia , Recém-Nascido Prematuro , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Inflamação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
2.
Exp Lung Res ; 49(1): 178-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37874145

RESUMO

PURPOSE/AIM: Bronchopulmonary dysplasia (BPD) is associated with poor survival in preterm infants. Intrauterine infection can aggravate the degree of obstruction of alveolar development in premature infants; however, the pathogenic mechanism remains unclear. In this study, we sought to determine whether pyroptosis could be inhibited by downregulating mammalian target of rapamycin (mTOR) activation and inducing autophagy in BPD-affected lung tissue. MATERIALS AND METHODS: We established a neonatal rat model of BPD induced by intrauterine infection via intraperitoneally injecting pregnant rats with lipopolysaccharide (LPS). Subsequently, mTOR levels and pyroptosis were evaluated using immunohistochemistry, immunofluorescence, TUNEL staining, and western blotting. The Shapiro-Wilk test was employed to assess the normality of the experimental data. Unpaired t-tests were used to compare the means between two groups, and comparisons between multiple groups were performed using analysis of variance. RESULTS: Pyroptosis of lung epithelial cells increased in BPD lung tissues. After administering an mTOR phosphorylation inhibitor (rapamycin) to neonatal rats with BPD, the level of autophagy increased, while the expression of autophagy cargo adaptors, LC3 and p62, did not differ. Following rapamycin treatment, NLRP3, Pro-caspase-1, caspase-1, pro-IL-1ß, IL-1ß, IL-18/Pro-IL-18, N-GSDMD/GSDMD, Pro-caspase-11, and caspase-11 were negatively regulated in BPD lung tissues. The opposite results were observed after treatment with the autophagy inhibitor MHY1485, showing an increase in pyroptosis and a significant decrease in the number of alveoli in BPD. CONCLUSIONS: Rapamycin reduces pyroptosis in neonatal rats with LPS-induced BPD by inhibiting mTOR phosphorylation and inducing autophagy; hence, it may represent a potential therapeutic for treating BPD.


Assuntos
Displasia Broncopulmonar , Animais , Feminino , Humanos , Gravidez , Ratos , Autofagia , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/metabolismo , Caspases/metabolismo , Recém-Nascido Prematuro , Interleucina-18/metabolismo , Fosforilação , Piroptose , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
3.
Anal Methods ; 14(43): 4300-4308, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36268819

RESUMO

Dual-mode sensing with a two-signal read-out is conducive to the improvement of detection accuracy. Herein, a fluorescent and scattering dual-mode chemosensor for tetracycline (TC) is proposed based on a carbon dot@cerium-guanosine monophosphate (CD@GMP-Ce) coordination polymer network. The inexpensive CD@GMP-Ce was prepared by exploiting the adaptive inclusion capability of coordination polymers and possessed remarkable fluorescence and strong Rayleigh scattering. The functional CD@GMP-Ce demonstrated fluorescence and scattering, the two optical-signal responses to TC simultaneously. Based on TC-specific fluorescence and scattering decline, the dual-mode detection of TC was established and the probe's detection limits were 43 nM in the fluorescence mode and 77 nM in the scattering mode, respectively. Furthermore, the potential application of the dual-mode sensor was verified by measuring TC in milk and tap-water samples. The study not only provides a new perspective for the development of assay methods for TC but also expands the applications of cerium coordination polymers.


Assuntos
Cério , Polímeros , Guanosina Monofosfato , Carbono , Espectrometria de Fluorescência/métodos , Tetraciclina , Antibacterianos , Corantes Fluorescentes
4.
Mikrochim Acta ; 185(11): 522, 2018 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-30368605

RESUMO

A colorimetric assay is described for acrylamide (AA). It is based on color changes induced by an increase in the distance between gold nanoparticles (AuNPs) that is caused by AA copolymerization. First, AuNPs were modified with a thiolated propylene amide poly(ethylene glycol) that also contains the AA functionality. The carbon-carbon double bonds on the modified AuNPs can be polymerized under the catalysis of a photoinitiator and under UV irradiation. This results in the aggregation of the AuNPs and in a color change from red to gray. In the presence of AA, the distance between the AuNPs increases due to copolymerization with AA, and the solution of AuNPs preserves its original red color. Under optimized conditions, the absorption ratio (A525/A740) of the solution increases linearly in the 1 nM to 10 µM free AA concentration range, with a 0.2 nM limit of detection. Hence, the method meets the need for rapid monitoring of trace AA in food. The method has a relative error (RSD) that is lower compared to the accepted HPLC method. Graphical abstract Schematic of a novel colorimetric strategy for acrylamide (AA) detection based on the increase of distance between gold nanoparticles (AuNPs) caused by AA participated polymerization.

5.
J Food Sci Technol ; 54(2): 572-577, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28242956

RESUMO

Inhibiting the formation of acrylamide (AA) and hydroxymethylfurfural (HMF) during food heating processes has attracted considerable investigative efforts due to potential health concerns associated with these compounds. The main purpose of this work is to demonstrate a strategy to simultaneously inhibit the formation of AA and HMF with sodium glutamate microcapsules selected to confirm the efficacy of this strategy. An asparagine-glucose aqueous model system was prepared containing free sodium glutamate and sodium glutamate microcapsules. Compared to adding free sodium glutamate, the maximum inhibition efficiency for AA and HMF was found to increase by addition of sodium glutamate microcapsules to 19.07 and 84.32%, respectively. Moreover, the kinetics of AA and HMF formation were studied in this model system. The AA inhibition efficiency significantly increased from 6.75 to 60.35% and the HMF inhibition efficiency significantly increased from 5.98 to 79.72% with increasing the reaction time from 25 to 40 min, indicating that the sodium glutamate microcapsules strategy proves to be far superior at prolonged heating times. These findings suggested that this inhibition strategy may provide promising characteristics for a variety of applications in food processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...